

CANALIZAÇÃO DO CÓRREGO JOSEFA GOMES ETAPA 1 (ENTRE AVENIDA CALIFÓRNIA E RUA EUNICE)

MEMORIAL DE CÁLCULO

CONCEPÇÃO DO PROJETO

Estudos Hidrológicos

Os estudos hidrológicos pertinentes ao projeto de drenagem aqui apresentado tem como objetivo final a determinação das vazões de enchente que tenham probabilidades de ocorrência compatíveis com as condições de ocupação verificadas ao longo das margens dos cursos d'água considerados.

A inexistência de informações fluviométricas relativas aos córregos em estudo conduzem à utilização de métodos indiretos, que relacionam as descargas com as precipitações e com as características das bacias de drenagem a montante das secções consideradas. Dentre os diversos métodos indiretos disponíveis, o que mais se presta para aplicação em bacias com as características das estudadas é o método do Hidrograma Unitário Sintético. A aplicação do hidrograma unitário exige que se defina um hietograma de projeto, a partir de um estudo de chuvas intensas.

 Metodologia Utilizada na Determinação dos Valores de Precipitação, Duração e Frequência de Chuvas.

Com os dados coletados de chuva elaborou-se o presente estudo, visando a determinação das alturas pluviométricas para diferentes períodos de recorrência e diferentes durações.

A metodologia empregada foi o método de "Probabilidade Extrema de Gumbel" - maiores detalhes, ver publicação do DNIT IPR-715 "MANUAL DE HIDROLOGIA BÁSICA PARA ESTRUTURAS DE DRENAGEM". Para este estudo escolheu-se a maior altura de chuva em cada ano durante todo o período, para os três postos. Para tempos de duração menores que um dia, foram feitas correções pelo Método das Isozonas.

A seguir apresentamos as Tabelas de Cálculos que fornecem as relações entre as precipitações máxima, período de retorno e a probabilidade de ocorrência, para a Estação da Fazenda Santa Sé . Os índices utilizados nas tabelas a seguir são:

- P... Valor máximo de precipitação diária, no período de 1 ano.
- P... Precipitação média.
- m... Números de anos observados.
- F... Freqüência de vazões de enchentes observados.
- Tr.. Tempo de recorrência.
- n... Número de ordem, variável de 1 a n.

- K... Coeficiente que depende do numero de amostras tomadas e do período de recorrência. Valor tabelado por Weise e Reid.
- Pr.. Fórmula devida a Vem de Chow, onde Pr é a precipitação à um cento período de recorrência.

Pr.. P + S x K

	ESTUDO ESTATÍSTICO DAS CHUVAS								
	MÉTODO DAS PROBABILIDADES EXTREMAS DE GUMBEL								
Posto	FAZENDA SANTA S	É-FORMOSA							
Período de Obs.	38 anos	de	1970	а	2007				
Latitude	15°123'58"								
Longitude	47"09'25"								
Altitude	-								
Código	1547001								

DATA NIAMESANO	SEQ.	P (mm)	Nº ordem	P-ordenada (rom)	P-Pm	(P-mn)²	F=n/(m+1)%	Tr=1/F
1970		146 60	1	277,00	176,52	31.159,68	2 56	39,0
1971		73,00	2	146,60	46,12	2.127,15	5,13	19,5
1972		75,00	3	146,20	45,72	2.090,41	7,69	13,0
1973		77,20	4	141,20	40,72	1.658,20	10.26	9,8
1974		91,00	5	140,30	39,82	1.585,72	12.82	7,8
1975		88,20	6	128,00	27,52	757,41	15.38	6,5
1976		88,10	7	125,20	24,72	611,13	17,95	5,6
1977		98,20	8	125,20	24,72	611,13	20,51	4,9
1978		140 30	9	120,50	20,02	400,84	23,08	4,3
1979		120 50	10	115,20	14,72	216,71	25,64	3,9
1980		82,20	- 11	113,40	12,92	166,95	28,21	3,5
1981		113,40	12	110,80	10,32	106,52	30,77	3,3
1982		94,40	13	110,10	9,62	92,56	33,33	3,0
1983		115,20	14	106,40	5,92	35,06	35,90	2,8
1984		71,00	15	100,20	-0,28	0.08	38,46	2,6
1985		88,10	16	98,20	-2,28	5,19	41.03	2,4
1986		277,00	17	94,40	-6,08	36,95	43.59	2,3
1987		56,40	18	92,10	-8,38	70,21	46 15	22
1988		86,10	19	91,00	-9,48	89,85	48,72	2,1
1989		128 00	20	88,40	-12,08	145,90	51,28	2,0
1990		83,40	21	88.20	-12,28	150,77	53.85	1,9
1991		106.40	22	88.10	-12,38	153,24	56,41	1,8
1992		110.80	23	88,10	-12,38	153,24	58.97	1,7
1993		88,40	24	87,00	-13,48	181,68	61.54	1,6
1994		100 20	25	86,10	-14,38	206,75	64.10	1,6
1995		110.10	26	84,00	-16,48	271,56	66.67	1,5
1996		87,00	27	83,40	-17,08	291,69	69.23	1,4
1997		141,20	28	82,20	-18,28	334,12	71.79	1/4
1998		61,20	29	77,20	-23,28	541,91	74.36	1,3
1999		146,20	30	75,00	-25,48	649,18	76.92	1,3
2000		70,30	31	73,00	-27,48	755,09	79.49	1,3
2001		60,30	32	71,00	-29,48	869,01	82.05	1,2
2002		125,20	33	70,30	-30,18	910,77	84 62	1,2
2003		55,10	34	61,20	-39,28	1.542,84	87 18	1,1
2004		125 20	35	61,20	-39,28	1.542,84	89.74	1,1
2005		84,00	36	60,30	-40,18	1.614,35	92 31	1,1
2006		61,20	37	56,40	-44,08	1.942,95	94 87	1,1
2007		92,10	38	55,10	-45,38	2.059,25	97.44	1,0

Calculando a chuva de 1 dia							
P5=	135,8 mm						
P10=	161,5 mm						
P15=	175,8 mm						
P25=	194,0 mm						
P50=	218,1 mm						
P100=	242,1 mm						

Convertendo chuvas de um dia para chuva de 24 horas								
P5=	18,4 mm							
P10=	21,9 mm							
P15=	23,9 mm							
P25=	26,4 mm							
P50=	29,8 mm							
P100= 29,4 mm								

Pm= 102,96
Tot. (P-Pm)2= 52,136,70

$$DesvioPad = \sqrt{\frac{\sum (P-Pm)^2}{(m-1)}} = 38,95$$
Precipitações Máximas Calculadas Pelo Método de Gumbel

Pr = Pm + Desv.K =	102,96	+	38,95 K		
Tr=	5 Anos	K=	0,843	P5=	135,80 mm
Tr =	10 Anos	K=	1,503	P10=	161,51 mm
Tr =	15 Anos	K=	1,871	P15=	175,84 mm
Tr =	25 Anos	K=	2,338	P25=	194,03 mm
Tr =	50 Anos	K=	2,957	P50=	218,15 mm
Tr =	100 Anos	K=	3,571	P100=	242,06 mm

Método das Isozonas

A necessidade de conhecimento das alturas de precipitação para tempos de duração inferiores a 24 horas, e a baixa densidade de postos pluviográficos que possam proporcionar estes dados, obrigam a extrapolação destes postos distantes até o local de projeto. O método utilizado para esta extrapolação é o das Isozonas, esta correlação permite, de maneira simples, a dedução da precipitação para os tempos de concentração necessários inferiores à 24 horas.

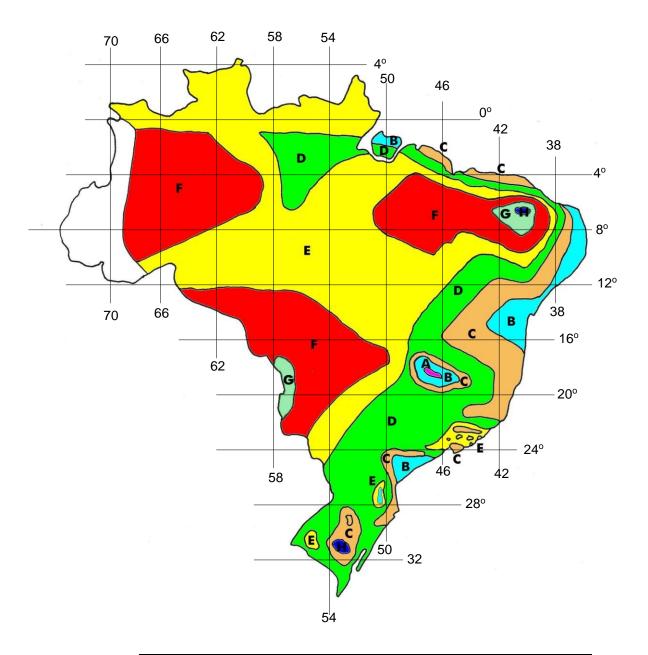
O trabalho do Eng.º Torrico partiu da observação que para determinadas áreas geográficas, ao se desenhar em um papel de probabilidade as precipitações de 24 horas e 1 hora de diferentes estações pluviográficas do Brasil, e prolongando-se as respectivas retas de altura de precipitação/duração, estas tendem a cortar o eixo das abscissas em um mesmo ponto. Esta tendência significa que, em cada área homóloga, a relação entre as precipitações de 1 e 24 horas, para um mesmo tempo de recorrência, é constante e independe de alturas de precipitação.

A estas áreas homólogas, o autor denominou de Isozonas e elaborou o mapa, relacionando as alturas de precipitações máximas com duração de 1 a 24 horas para tempo de recorrência de 5 a 10.000 anos e com duração de 6 minutos e 24 horas para tempo de recorrência de 5 a 100 anos.

Procedimento

A partir do estudo estatístico, citado anteriormente, calculou-se para as estações em estudo, a chuva de um dia, no tempo de recorrência previsto. Converteu-se esta chuva de um dia, em chuva de 24 horas, multiplicando-se esta, pelo coeficiente 1,10, que é a relação 24 horas/1 dia.

Determinou-se no mapa apresentado a seguir, a isozona correspondente a região do projeto.


Em nosso estudo a isozona utilizada foi a isozona E, típica das zonas continental e do noroeste, com coeficientes de índices altos.

Após ter-se determinado a isozona, fixam-se para ela as porcentagens correspondentes a 6 minutos e 1 hora.

Após a determinação das alturas de precipitação para duração de 24 horas, 1 hora e 6 minutos, para cada tempo de recorrência considerado, marcou-se estes valores no papel de probabilidade de Hershfield e Wilson, e ligando-se os pontos marcados, obtiveram-se as alturas de precipitação para qualquer duração entre 6 minutos e 24 horas.

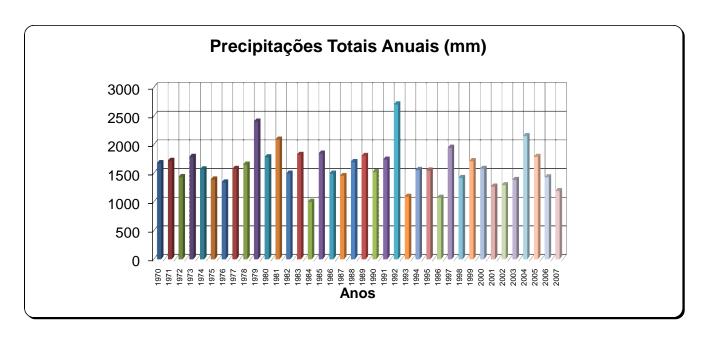
Segue a apresentação do mapa das isozonas, quadro com os valores característicos, os gráficos contendo as relações entre altura de chuva, tempo de duração e tempo de recorrência, para a distribuição de chuvas para o trecho em estudo, para a estação da Fazenda Santa Sé.

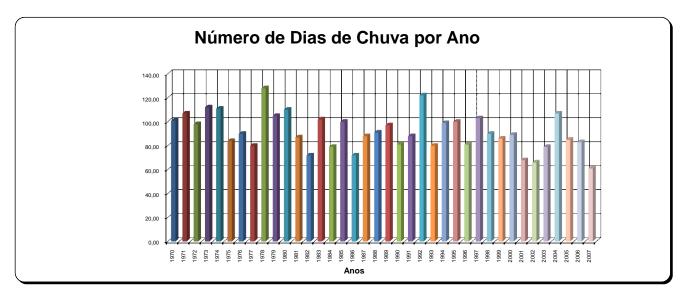
MÉTODO DAS ISOZONAS DE IGUAL RELAÇÃO

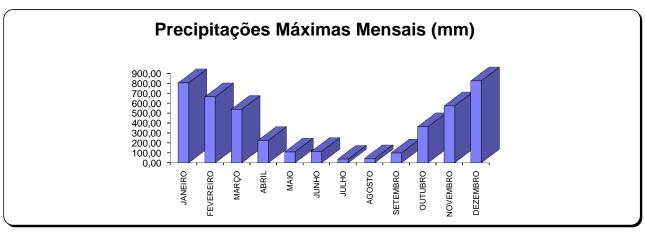
	TEMPO DE RECORRÊNCIA EM ANOS												
70	NA	1 HORA/24 HORAS CHUVAS									6min 24h		
	/IN/A	5	10	15	20	25	30	50	100	1000	10000	5-50	100
Α		36,2	35,8	35,6	35.6	35,4	36,3	35	34,7	33,6	32,5	7	6,3
В		38,1	37,8	37,5	37,5	37,3	37,2	36,9	36,6	35,4	34,3	8,4	7,5
С		40,1	39,7	39,5	39,5	39,2	39,1	38,6	38,4	37,2	36,2	8,8	8,5
D		42	41,8	41,4	41,2	41.1	41	40,7	40,3	39	37,3	11,2	10
Е		44,9	43,6	43,3	43,2	43	42,9	42,6	42,2	40	39,6	12,6	11,2
F		46	45,6	45,3	45,1	44,9	44,7	44,5	44,1	42,7	41,3	13,2	12,4
G		47,9	47,6	47,2	47	46,6	46,7	46,7	45,1	44,5	43,,1	15,4	13,7
Н		49,9	49,4	49,1	48,9	48,8	48,5	48,3	47,8	46,5	44,8	16,7	14,9

MÉTODO D	AS ISOZONAS	ONAS ISOZONA ESCOLHIDA E						
	1 HORA / 24 HORAS	3				6	MIN / 24 HORA	S
TR	5	10	15	25	50	100	5 A 50	100
%	44,0	43,6	43,3	42,9	42,6	42,2	12,6	11,2

DUBAÇÃO	DURAÇÃO TEMPO DE RECORRÊNCIA EM ANOS								
DURAÇAO	5	10	15	25	50	100			
0,1 H	18,39	21,94	23,92	26,43	29,75	29,38			
1 H	64,23	75,92	82,20	90,19	100,60	110,71			
24 H	145,98	174,13	189,83	209,75	236,15	262,34			


	TABELA DURAÇÃO-PRECIPITAÇÃO-INTENSIDADE - MÉTODO DAS ISOZONAS												
POSTO					FA	ZENDA SANTA	SÉ-FORMOSA						
DURAÇÃO EM	TEMPO DE RECORRÊNCIA EM ANOS												
HORAS	5		1	10	15		2	25	5	50	1	00	
	P(mm)	I (mm/h)	P(mm)	I (mm/h)	P(mm)	I (mm/h)	P(mm)	I (mm/h)	P(mm)	I (mm/h)	P(mm)	I (mm/h)	
0,10	18,39	183,94	21,94	219,41	23,92	239,18	26,43	264,28	29,75	297,55	29,38	293,82	
0,17	27,71	166,28	32,92	197,50	35,77	214,61	39,39	236,36	44,16	264,96	45,92	275,50	
0,25	35,45	141,81	42,03	168,12	45,61	182,42	50,16	200,63	56,12	224,48	59,65	238,59	
0,50	49,38	98,76	58,43	116,86	63,31	126,62	69,53	139,06	77,64	155,29	84,35	168,71	
0,75	57,93	77,24	68,50	91,34	74,19	98,92	81,43	108,57	90,86	121,15	99,53	132,71	
1,00	64,23	64,23	75,92	75,92	82,20	82,20	90,19	90,19	100,60	100,60	110,71	110,71	
1,25	68,56	54,85	81,12	64,89	87,89	70,31	96,52	77,21	107,77	86,22	118,73	94,98	
1,50	72,25	48,17	85,55	57,04	92,75	61,84	101,92	67,95	113,89	75,93	125,58	83,72	
1,75	75,48	43,13	89,44	51,11	97,01	55,43	106,65	60,94	119,26	68,15	131,58	75,19	
2,00	78,37	39,18	92,90	46,45	100,81	50,40	110,86	55,43	124,04	62,02	136,92	68,46	
4,00	94,56	23,64	112,36	28,09	122,13	30,53	134,55	33,64	150,89	37,72	166,97	41,74	
8,00	112,82	14,10	134,29	16,79	146,17	18,27	161,25	20,16	181,17	22,65	200,83	25,10	
14,00	129,06	9,22	153,81	10,99	167,56	11,97	185,01	13,21	208,10	14,86	230,96	16,50	
24,00	145,98	6,08	174,13	7,26	189,83	7,91	209,75	8,74	236,15	9,84	262,34	10,93	


Estação: FAZENDA SANTA SÉ - FORMOSA


PLUVIOGRAMA

PRECIPITAÇÕES E NÚMERO DE DIAS DE CHUVAS POR ANO

	JANEIRO	FEVEREIRO	MARÇO	ABRIL	MAIO	JUNHO	JULHO	AGOSTO	SETEMBRO	OUTUBRO	NOVEMBRO	DEZEMBRO			RESUMO
	P(mm)	P(mm)	P(mm)	P(mm)	P(mm)	P(mm)	P(mm)	P(mm)	P(mm)	P(mm)	P(mm)	P(mm)	RESUMO		
Máx. Mensal	806,60	665,40	539,70	226,60	111,00	115,40	38,80	44,00	100,40	364,50	575,40	826,50	Pmáx=	2704,9 mm	(Precip. Máxima Anual)
Méd. Mensal	311,59	230,54	231,19	104,14	27,50	7,67	2,60	7,21	35,33	129,83	241,98	319,52	Pméd.=	1641,4 mm	(Precip. Média Anual)
Mín. Mensal	72,20	30,40	60,40	25,30	0,00	0,00	0,00	0,00	0,00	8,20	53,60	112,00	Pmín.=	1003,7 mm	(Precip. Mínima Anual)
NDC Máx. Mensal	28,00	26,00	26,00	16,00	8,00	2,00	4,00	4,00	6,00	19,00	22,00	28,00	Nmáx.=	128	(Núm. Máx. de dias de chuva por ano)
NDC Méd Mensal	15,00	13,00	13,00	7,00	2,00	0,00	0,00	1,00	3,00	10,00	13,00	17,00	Nméd.=	95	(Núm. Méd. de dias de chuva por ano)
NDC Mín. Mensal	7,00	2,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00	4,00	8,00	Nmín.=	72	(Núm. Mín. de dias de chuva por ano)

Tempo de recorrência (tr)

O tempo de recorrência para o projeto dos dispositivos de drenagem foi fixado, levando-se em consideração os seguintes fatores:

- Importância e segurança da obra;
- No caso de interrupção do tráfego, os prejuízos econômicos;
- Danos às obras de drenagem;
- Estimativa de custos de restauração, na hipótese de destruição;
- Periculosidade de sub-estimação das vazões pelos danos que as cheias possam ocasionar às populações ribeirinhas e às propriedades, e
- Outros fatores de ordem econômica.

Em face desses fatores, foram usados os seguintes períodos de recorrência segundo instrução do DNER:

a - Bueiros de grota e Drenagem Superficial	05 anos
b - Bueiros em bacias até 1,0 km²	10 anos
c - Bueiros em bacias entre 1,0 km² e 5,0 km²	25 anos
d - Item "b" calculado como orifício	25 anos
e - Bueiros ou galerias em que 5,0 km² < a < 10,0 km²	50 anos
f - Item "c" calculado com orifício	50 anos
g - Pontes até 100,0 m.	50 anos
h - Pontes maiores que 100,0 m.	100 anos

Para o estudo do projeto, levando em consideração que será dimensionado um canal que dará destinação a todo fluxo de escoamento que se direciona ao leito do córrego Josefa Gomes, adotaremos um período de retorno Tr com o valor de 100 anos, afim de garantirmos a segurança nas vazões máximas do canal.

Conclusões

Considerando que o método da isozonas vem sendo empregado com sucesso em diversas regiões do país, que os dados da ANA são recentes e que os postos pesquisados estão localizados próximos ao trecho em projeto, optou-se por adotar as séries históricas destes postos e utilizar o método das isozonas na avaliação das relações de precipitação/duração/freqüência.

A estação da Fazenda Santa Sé apresenta um período de 38 anos de observações confiáveis e suas alturas de chuva são bastante confiáveis, é a que melhor representa a pluviometria da região, sendo, portanto, a fonte de dados escolhida para dimensionamento das obras de drenagem do trecho.

Tempo de concentração

Mapa de divisão dos trechos do canal - Etapa 1

É definido como sendo o tempo necessário para que a área de drenagem passe a contribuir para a vazão na seção estudada. De uma maneira geral, o tempo de concentração de uma bacia qualquer depende de vários parâmetros tais como:

área da bacia e sua forma;

comprimento e declividade do canal mais longo (principal);

tipo, recobrimento vegetal, uso da terra etc.

Segundo estudos, as características que influem principalmente no tempo de concentração são as três citadas acima.

Para o cálculo do tempo de concentração adotou-se a fórmula de Kirpich modificada:

$$Tc = 1.42 \times \left(\frac{L^3}{H}\right)^{0.395}$$

onde:

Tc - Tempo de concentração em horas;

L - Comprimento do talvegue em Km; e

H - Desnível máximo em metros.

O cálculo dos outros parâmetros, ou seja, área da bacia drenada, comprimento do talvegue principal e desnível entre o ponto mais alto nas cabeceiras dos mananciais e a seção de drenagem foram determinados com suficiente precisão por meio do modelo digital de elevação global (ASTER, desenvolvido pelo METI, do Japão em conjunto com a NASA, dos EUA).

Cálculo do Tc ex (Tempo de concentração para o canal existente a montante do trecho em estudo).

$$Tc \ ex = 1.42 \ x \left(\frac{2.58^3}{34.564}\right)^{0.385}$$

Tc ex = 1,08 h

L = 2,58 km H = 935,476 - 899,912 = 34,564 m

Cálculo do Tc T1 (Trecho 1)

$$Tc T1 = 1.42 \ x \left(\frac{0.792^3}{7.565}\right)^{0.385}$$

Tc T1 = 0.49779 h

L = 0,792 km

H = 886,701 - 879,136 = 7,565 m

Cálculo do Tc T2 (Trecho 2)

$$Tc T2 = 1.42 \ x \left(\frac{0.837^3}{2.21}\right)^{0.385}$$

Tc T2 = 0.852 h

L = 0.837 km

H = 879,136 - 876,926 = 2,21 m

Determinação da chuva de projeto

A fim de darmos seguimento na determinação das vazões a serem suportadas no canal, determinamos a chuva de projeto, para tanto, lançaremos mão do método dos blocos alternados, onde basicamente se arbitra a duração da chuva, não devendo ser maior que o tempo de concentração da bacia e os intervalos de tempo a serem adotados devem também ser preferencialmente submúltiplos do tempo total de chuva, assim tendo definidos os critérios de tempo e com a curva IDF ou os dados de precipitação em mãos, monta-se uma tabela para as variações definidas e alocam-se os "blocos" de precipitação respeitando a regra de se posicionar o pico de precipitação nas regiões entre 1/3 e 1/2 da duração da chuva. Para nosso estudo adotamos os seguintes critérios e posicionamentos:

t (min)	P (cm)	P (mm)	P Proj (mm)
0	0	0	0
10	4,42	44,2	84,6
20	6,921	69,21	103,4
30	8,46	84,6	94,9
40	9,49	94,9	69,21
50	10,34	103,4	44,2

Determinação da vazão de contribuição do córrego em estudo

Para determinação da vazão de contribuição dos diversos trechos nos quais dividimos o canal, lançaremos mão da ferramenta de modelagem hidrológica (**Hydrologic Modeling System**) desenvolvida pela Hydrologic Engineering Center, do U.S. Army Corps of Engineers. Conhecida por HEC-HMS. Este software lança mão de diversos métodos para a determinação das vazões de projeto, no nosso caso faremos uso do método de hidrograma unitário do SCS (Método SCS) e assim alimentaremos o software com os dados necessários, gerando nossa vazão de pico a ser utilizada.

Para caracterização da bacia, precisaremos da área da bacia em km², do número de curva de perda CN a ser considerado, do tempo de resposta de cada trecho, que consideraremos como sendo tL = 0,6 x Tr e da chuva de projeto, já definida anteriormente.

Trecho de canal existente

A $ex = 4,88 \text{ km}^2$

tL ex = 39,05 min

CN = 70

 $Q ex = 47,4 \text{ m}^3/\text{s}$

Trecho 1 do canal

 $A 1 = 2,045 \text{ km}^2$

tL 1 = 17,92 min

CN = 70

 $Q 1 = 35,2 \text{ m}^3/\text{s}$

Q acum. = $82,6 \text{ m}^3/\text{s}$

Trecho 2 do canal

 $A 2 = 1,745 \text{ km}^2$

 $tL_2 = 30,67 \text{ min}$

CN = 70

 $Q = 20,8 \text{ m}^3/\text{s}$

 $Q = 103,4 \text{ m}^3/\text{s}$

Trecho de ramal de galeria

Para o ramal de galeria, temos os dados da planilha de cálculo e dimensionamento da rede dupla de DN 2x 1.500 mm, e a vazão máxima calculada para esta rede foi de 13.550 l/s, a qual adotamos para o canal, gerando assim a vazão acumulada total de Q acum = 116,95 m³/s.

Dimensionamento de seções transversais dos canais

Para cálculo de vazão máxima nos canais e velocidade utiliza-se a fórmula de Chézy com coeficiente de Manning, representada pela expressão:

$$Q = \frac{1}{n} x A x Rh^{2/3} x I^{1/2}$$

Onde:

n = coeficiente de rugosidade de Ganguillet e Kutter;

Q = Vazão do canal em questão (m³/s);

i = declividade do canal em (m/m);

A = área molhada no canal (m²);

Rh = Raio hidráulico (m).

Há ainda o método dos parâmetros adimensionais "desenvolvido pelo professores Ariovaldo Nuvolari e Acácio Eiji Ito, da Faculdade de Tecnologia de São Paulo (FATEC-SP) ... abrevia os cálculos no dimensionamento de canais, utilizando a fórmula de Chézy com coeficiente de Manning" (AZEVEDO NETO, M. F. Fernandez, R. Araujo, A. E. Ito. Manual de Hidráulica. São Paulo, Edigar Blucher, 1998 8ª ed. 669p.).

Fazendo uso da Tabela de escoamento em regime permanente uniforme de canais trapezoidais com

variação de m (indicador horizontal do talude) e valor do adimensional de $\left(\frac{Q \times n}{\frac{8}{b^3} \times i^{\frac{1}{2}}}\right) = \left(\frac{y}{b}\right)$

Sendo:

Q = Vazão do canal em questão (m³/s);

b = Dimensão da base do canal (m);

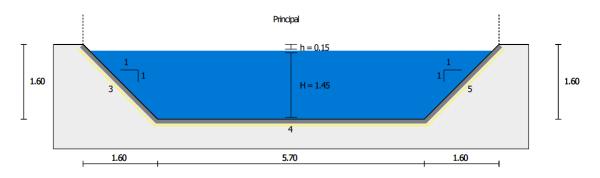
n = coeficiente de rugosidade de Ganguillet e Kutter

i = declividade do canal em (m/m);

y = Altura da lâmina d'água no canal (m).

Novamente, a fim de simplificarmos processos e, utilizando ferramentas disponibilizadas por parceiros do meio, lançaremos mão do uso de software (MACRA Studio) para o cálculo das vazões de projeto dos canais.

Dimensionamento do ramal de galeria


Para o canal trapezoidal de direcionamento da galeria, consideraremos todas as paredes e o fundo do canal como sendo construídos em Colchão Reno e teremos os seguintes dados de alimentação:

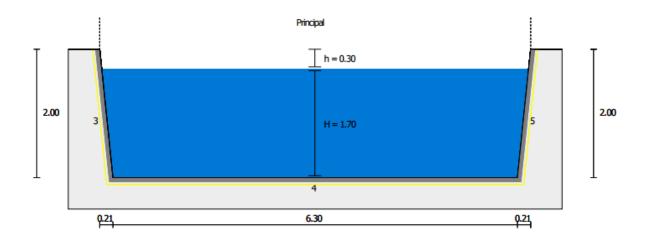
I = 0.12 %

Borda livre = 15 cm

n = 0.0277

Resultando na seguinte seção transversal:

Dimensionamento do Trecho 1


Este canal, por ser margeado por duas pistas pavimentadas, suas paredes devem fornecer boa resistência à eventuais esforços e reduzir o espaço ocupado pelo vão do canal, sendo assim optamos aqui por paredes de gabião, mantendo o fundo em colchão reno, porém o leito do córrego Josefa Gomes oferece muito pequena declividade total para trabalharmos, então optamos por adotar a estratégia de revestir a parte interior do canal em concreto, exigindo-se também um bom acabamento final, para que possamos considerar uma menor rugosidade para as superfícies, assim podendo adotar uma seção transversal reduzida, economizando tanto em materiais do canal quanto no bueiro de travessia da Rua Eunice, diminuindo sua seção.

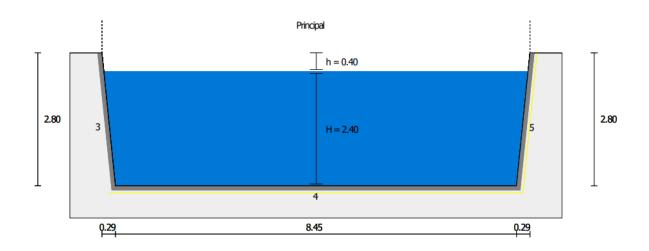
I = 0.95 %

Borda livre = 30 cm

n = 0,014 (Gabião/Colchão reno argamassado)

Resultando na seguinte seção transversal:

Dimensionamento do Trecho 2 (Final)


Para o trecho final seguimos adotando as paredes em gabião e o fundo em colchão reno, a seção também será revestida em concreto bem acabado para garantir menor rugosidade e terá os seguintes dados de alimentação:

I = 0,34 %

Borda livre = 40 cm

n = 0,014 (Gabião/Colchão reno argamassado)

Resultando na seguinte seção transversal:

